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Abstract
The permeabilities and the formation factors of an anisotropic block of com-
pressed expanded graphite are measured in gas permeation and ion diffusion
experiments, respectively. The critical pore diameter of the material is obtained
from mercury-injection experiments carried out on the material, according to
the work of Katz and Thompson (Katz A J and Thompson A H 1986 Phys.
Rev. B 34 8179, 1987 J. Geophys. Res. 92 599). Other length scales related to
transport are obtained from the theory of Johnson et al (Johnson D L, Koplik J
and Schwartz L M 1986 Phys. Rev. Lett. 57 2564) and are calculated on the
basis of several models of pore structure available from the literature. All of
these different data are compared, and only the model for which the pores are
cylinders of lengths l and diameters δ such that l = δ is shown to work. This
finding is confirmed by the formation factor derived from the experimental
values of the permeabilities and the kind of pore structure considered: again,
only that for which l = δ leads to consistent results. Finally, the latter model
and the theory of Katz and Thompson are used to estimate both the permeability
and the formation factor of the blocks of compressed expanded graphite. A very
good agreement is found between the estimate and the experimental results.

1. Introduction

Among the properties of porous media, the porosity �, which is the ratio of pore volume to
total volume of the sample, is the most important. However, � is just a single number and
hence cannot suffice to characterize the complex pore-space geometry. Other properties are
thus necessary. The permeability k is probably the second most important property of a porous
system, and much experimental and theoretical work has been devoted to this physical quantity
in the last three decades [1–3]. Indeed, k is a very complex function of the pore space; it both
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depends on the absolute sizes of the voids and is very sensitive to the topology of the connected
part of the pore network. Another interesting property is the so-called formation factor F ; the
name originates from geology: study of the electrical properties of rock formations. F is an
adimensional parameter defined for materials whose pore space is saturated with a conducting
fluid, like brine. It is simply the ratio of the conductivity of the free electrolyte (σ0) to that
of the saturated porous material (σ ), provided that the solid phase is insulating. By virtue of
Einstein’s equation, F is also the ratio of the corresponding diffusivities of the ions responsible
for the conductivity of the saturating fluid. It depends only on the geometry of the pore space.
Finally, the tortuosity factor τ may be defined in terms of the formation factor and the porosity
as τ = F�. Unlike the permeability k, the parameters F and τ are scale-invariant quantities,
meaning that if the sizes of the pores and that of the solid grains are magnified or shrunk, leaving
the porosity unchanged, their values are unaffected. Since one of the three properties �, k
or F is often more easily measured than the others, depending on the materials, much effort
was made to find cross-property relations between them [4, 5]. For example, the well-known
Kozeny–Carman theory has been used many times to describe the permeability behaviour of
simple porous systems [1, 2, 6, 7].

In the present study, attempts are made to calculate some of these properties from the
measurements of others for a highly porous material such as compressed expanded graphite.
This material and the method used for measuring the permeability and the formation factor are
described in section 2. The theories which are used to study the properties of porous media,
namely that of Kozeny and Carman (KC), that of Johnson, Koplik and Schwartz (JKS) and
that of Katz and Thompson (KT) are briefly developed in section 3. According to KT, the
permeability and the formation factors are calculable from the knowledge of a critical pore
diameter derived from mercury-injection experiments. However, the corresponding equations
and more exactly the constant prefactors—see section 4—have been criticized many times and
hence should not be applied directly. Indeed, it has been shown that these prefactors depend
on the pore structure. Prior to making any calculation, a suitable model of the pore space
should be identified. This is achieved in section 5 by comparison of experimental values of
the permeability and formation factor with KC, JKS and KT theoretical results, which are all
very similar for a given model of pore structure. Next, suitable prefactors for KT equations
are obtained, and calculation of k and F is performed in section 6 according to the KT theory.

2. Material and measurements

2.1. Compressed expanded graphite

Expanded graphite (EG) is obtained by subjecting natural graphite flakes inserted by sulphuric
acid to a brutal thermal shock. The sudden volatilization of the intercalate induces a huge
unidirectional expansion of the initial platelets: highly porous worm-like ‘accordions’ of
graphite are obtained [8–12]. This very light material is characterized by an apparent density
of 7.5 kg m−3 and a surface area close to 40 m2 g−1, and its individual particles possess an
intrinsic mean porosity of about 99.3% [13]. The description, properties and applications of
EG are abundantly detailed in the literature [10, 14–18] and hence are not discussed here.
Highly porous cubes may be obtained by uniaxial compaction of expanded graphite in a
parallelepiped tube [13, 19]. Some of the potential uses of such consolidated materials, namely
as chemical heat pumps [20–23] or supports for active carbons or catalysts [19, 24], require a
good permeability of the graphite matrix. Indeed, this property is of first importance since it
governs the access of a given fluid to the active sites dispersed on the graphite surface. In this
paper, a cube of side 2 cm made of expanded graphite compressed at a density of 140 kg m−3
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is investigated in terms of permeability and formation factor. The choice of that particular
density originates from the fact that a good compromise is found between permeability and
electrical and thermal conductivities, these properties varying in opposite ways as the density
of the compressed EG increases [25].

Owing to the obvious orientation of the graphite flakes induced by the uniaxial
compression, anisotropic materials are obtained [13, 26]. Thus, compressed EG is a transverse
isotropic material [26, 27]. Consequently, the two directions of measurement �a and �c shown
in figure 1 are defined, and the permeability tensor may be written as follows:

��k =
(
ka 0 0
0 ka 0
0 0 kc

)
. (1)

ka is the permeability measured parallel to the bedding plane of the graphite flakes (xy-plane),
i.e., perpendicular to the pressing stress, while kc corresponds to the orthogonal direction
(z-axis). As dictated by the experimental set-up described below, two different samples are
needed to get ka and kc.

 pressing stress

ka, Fa

kc, Fc

 z

 x

 y

Figure 1. Definition of two orthogonal directions of measurement for both the permeability k
and the formation factor F . �a is the direction parallel to the bedding plane of the graphite flakes
(xy-plane), i.e., normal to the pressing stress, whereas �c is the one perpendicular to the bedding
plane (z-axis), i.e., parallel to the pressing stress.

2.2. Permeability measurements

The permeability k is measured as indicated in figure 2, by causing a gas to flow throughout
the compressed expanded graphite. For that purpose, the cubic sample is introduced in a tube,
which is next filled with a viscous glue. The latter neither affects the porosity of the material
nor covers any part of the opposite faces of the sample through which the gas must flow.
The tube is then placed into a close-fitting vessel, and nitrogen is forced to flow through the
sample with various inlet pressures P1. During each experiment, P1 is kept constant, while
both the flow rate Q and the pressure drop �P = P1 − P2 (P2 being the outlet pressure), are
simultaneously measured.

The calculation of the permeability is based on application of Darcy’s law [1, 2], which is
the hydraulic analogue of Ohm’s law for electrical conductivity, of Fick’s law for diffusion and
of Fourier’s law for heat flow. The ‘absolute permeability’ κ is the constant of proportionality
between the velocity �v of the fluid and the pressure gradient �∇P over the sample:

�v = −κ �∇P. (2)

According to this definition, the permeability is a function of both the pore phase and the
nature of the fluid. Hence, an ‘intrinsic permeability’ k is defined which takes into account the
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 ∆P

 P1

 Q

 N2

Figure 2. A schematic view of the device with which the permeability is measured. The
cubic sample is inserted into a close-fitting vessel (here shown open), and nitrogen is forced
to flow throughout it. The inlet pressure P1, pressure drop �P and flow rate Q are measured
simultaneously.

dynamic viscosity η of the fluid:

k = κη. (3)

Then, k depends only on the porous medium and has the dimension of area. For an incom-
pressible fluid, one gets

k = Q
L

S

(
η

P1 − P2

)
(4)

where L is the thickness of the sample and S its cross-sectional area. A very common unit
for k is not the square metre but the Darcy (D), which is defined as follows: k = 1 D if
�P = 1 atm, Q = 1 cm−3 s−1, S = 1 cm2, L = 1 cm and the viscosity of the fluid η = 1 cP,
thus corresponding to water. Hence, 1 mD ≈ 10−15 m2.

For a compressible fluid like a gas, the velocity is calculated by integrating the differential
form of Darcy’s law using the condition that is appropriate to gas flow: at constant temperature
and steady state, the pressure × velocity product is constant throughout the sample [2]. Thus,
one gets

v = −k
η

(
P 2

2 − P 2
1

2P2L

)
(5)

and hence

k = −QL
S
η

[
2(P1 −�P)

(P1 −�P)2 − P 2
1

]
. (6)

In figure 3(a), the permeability calculated with equation (6) is plotted as a function of the
inlet pressure P1. It is seen that k depends on P1; this situation is rather common for gases
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Figure 3. (a) Permeability (measured in the direction �a and calculated according to equation (6))
plotted as a function of the inlet pressure P1. (b) Application of Klinkenberg’s equation (7) in order
to extract the permeability extrapolated to infinite pressure (intercept).

[2, 3]. Consequently, Klinkenberg’s equation [2], which allows one to extrapolate k in the
limit of an infinite pressure, is applied. It reads

vP2Lη

�P Pm
= k

[
1 +

b

Pm

]
(7)

where Pm is the average pressure such that Pm = (P1 + P2)/2 = (2P1 −�P)/2, and b is the
so-called Klinkenberg constant, depending on both the gas and the pore phase. The application
of equation (7) is presented in figure 3(b): the permeability is the intercept of the straight line.
Thus, the value ka ≈ 4.16 mD is found. Similar measurements along the z-axis (see figure 1)
and subsequent treatments of the data lead to kc ≈ 2.25 mD.

2.3. Formation factor measurements

As stated above, the formation factor F is defined as the ratio σ0/σ, σ0 being the conductivity
of a given electrolyte and σ that of the pore space of the material studied, saturated with the
same electrolyte. Thus, F characterizes the effective resistance to current flow throughout
the sample. Nevertheless, since graphite is highly conducting, F cannot be obtained from
usual resistivity measurements of the impregnated material. This is why the derivation of
the formation factor requires the measurement of the diffusivities of the ions both within the
electrolyte alone (D0) and throughout the saturated pore volume (D). Then, F = D0/D.

The diffusion cell used for measuring the formation factors in the two directions �a and �c
defined previously is presented in figure 4. It is immersed in a thermostatic bath kept at 25 ◦C.
The cubic sample of compressed expanded graphite is first included and glued into a Teflon
block which fits perfectly the inner walls of the beaker subsequently used for the diffusion
experiment. The resultant block is then immersed into water laced with wetting agents, and the
porous sample is subjected to several successive vacuum–pressure cycles. The impregnation
of the material is assumed to be complete after three such cycles. At the beginning of the
diffusion experiment, the bottom compartment (referred to as compartment No 1) contains
a molar aqueous solution of copper sulphate, while the solution above the saturated sample
(referred to as compartment No 2) is free of ions. Compartment No 2 is gently stirred by
having small bubbles blown into the solution by a small air pump. The conductivity of the
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 4
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 3
 2

Figure 4. A schematic view of the device with which the formation factors are measured. The
cubic sample is inserted into a Teflon block separating two compartments. 1: compartment
No 1 containing a molar aqueous solution of CuSO4; 2: compartment No 2; 3: the sample of
compressed expanded graphite; 4: the electrode cell for the measurement of the ionic conductivity.
Compartment No 2 is gently stirred by having small bubbles blown into the solution by a small air
pump.

top compartment is measured as a function of time, using a Consort K912 conductimeter. The
latter is equipped with a four-pole Sentek electrode cell having a built-in Pt1000 temperature
compensator and a resolution of 0.01 µS cm−1.

Prior to the determination of the diffusion coefficients throughout the material, the increase
of the concentration of the ions in compartment No 2 must be calculated via a calibration curve.
The latter, obtained by measuring the conductivities at 25 ◦C of a number of solutions with
various solute contents, is presented in figure 5(a). From these data, the concentration in the
top part of the diffusion cell is then obtained as a function of time. After an initial delay t0,
during which diffusion of the ions becomes established across the thickness of the sample,
there is a linear increase with time in the concentration of the solution in compartment No 2.
This experiment is performed for two samples, each of them being oriented in such a way that
ions may diffuse either along the direction �a or along the direction �c of the material. Diffusion
of ions in water is also studied with an identical device, i.e., using the same compartment
volumes but without any sample and without stirring in compartment No 2. Therefore, direct
comparison between diffusivity throughout the material, on the one hand, and within water,
on the other hand, may be achieved, as detailed below.

The diffusion coefficient is defined as the constant D in Fick’s first law:

J = −D dC

dx
(8)

where J is the flux of diffusing species in moles per time per unit of cross-sectional area,
C their concentration and dC/dx the applied concentration gradient. Equation (8) may be
written as

V

S

dC2

dt
= D

C1 − C2

L
(9)

where S and L have the same meaning as before, V is the volume of solution in compartment
No 2,C1 andC2 are the solution concentrations in compartments No 1 and No 2 of the diffusion
cell, respectively. Hence,

D = VL

S(t − t0)
ln

[
1 +

C2

C1 − C2

]
. (10)

Thus, the linear behaviours observed in figure 5(b) for diffusion times greater than t0, whose
values depend both on the geometry of the experiment and on the material, are accounted for
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Figure 5. (a) A calibration curve showing the changes of conductivity of the electrolyte as a
function of its concentration. The solid line interpolates between the experimental data. (b) Plots
of ln[1 + C2/(C1 − C2)] versus the diffusion time, where C1 and C2 are the concentrations of the
ions in the top and in the bottom compartments shown in figure 4, respectively. C1 and C2 are
calculated from both conductivity measurements and part (a). The experiment is performed for two
samples in which diffusion takes place along either direction �a or direction �c. The inset shows the
diffusion of the ions in pure water. Formation factors are calculated from these data and application
of equation (10).

by equation (10). The formation factors may then be obtained from the comparison of the
slopes of the straight parts of the curves, i.e., corresponding to their steady-state regions; one
finds Fa = D0/Da ≈ 5.34 and Fc = D0/Dc ≈ 6.37.
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3. Theoretical background

The permeability, having the dimension of area, may be seen as representing the cross-section
of an effective channel for fluid flow through the pore space. Indeed, according to such a
dimensional analysis, k is proportional to a squared length L0, such that [29]

k = L2
0

F
. (11)

Such a formula is convenient, since it both expresses the fact that k has the dimension of
area and includes the tortuosity and the volume fraction of voids through F . The term L0 is
given different meanings by different authors. Among the various available theories, the three
following ones, which are known to yield the best results [5], are examined particularly.

3.1. Kozeny–Carman theory

This is the oldest theory; it deals with porous media comprising capillary pores. It is exact for a
bundle of cylindrical tubes having the same length and similar diameters, being non-intersecting
and parallel, but possibly tortuous. In such a representation, the so-called ‘hydraulic diameter’
rh is defined as being the ratio 2Vp/Sp, where Vp and Sp are the volume and the surface of the
pore space, respectively. Thus, the KC theory states that L2

0 = r2
h/8 in equation (11) and the

permeability reads

k = (Vp/Sp)
2

2F
= �(Vp/Sp)

2

2τ
(12)

where the tortuosity factor τ is the ratio of the capillary length to the sample thickness. Owing
to the simplistic hydraulic diameter concept, KC theory is sometimes unable to describe porous
systems with wide pore-size distributions. Besides, real pore spaces are multiply connected in
a complicated and random way, which is not taken into account by the KC model.

However, for many systems, empirical forms of equation (12) may be derived:

k = �3

cS2
sp

≡ �3

c′τS2
sp

≡ �2

c′FS2
sp

(13)

where c is the so-called Kozeny constant (c = 2 for cylindrical tubes, while c ≈ 5 for many
materials), c′ is an empirical parameter and Ssp is the internal accessible surface area per unit
volume of solid material. Such formulae are very attractive since they contain one single
constant (c or c′) which depends weakly on the structure, and other quantities like F ,� or Ssp
which both possess a physical meaning and are measurable independently of the permeability
[30]. Moreover, these formulae are often good approximations for a lot of very different
materials.

3.2. The theory of Johnson, Koplik and Schwartz

In the cases for which the pore system cannot be accounted for using a hydraulic diameter,
another definition for the length scale L0 is required. According to JKS, the new parameter&
may be derived from measurements of the electrical conductivity of the electrolyte-saturated
pore phase. & could be written as [31]

& = 2

(∫
|E0|2 dVp

)/(∫
|E0|2 dSp

)
= 2

m(�)Sp/Vp
�= 2

Vp

Sp
(14)
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where E0 is the magnitude of the local electric field in the pore space and m(�) is a constant
close to 1.5. With such a definition,& is an intrinsic measure of the dynamically interconnected
pore size; it is thus a dynamical length scale directly related to transport, unlike the previous
purely geometrical one, rh = 2Vp/Sp [5, 32].

Then, following Johnson, Koplik and Schwartz, L0 is such that

L2
0 = c1

&2

8
(15)

where c1 is a constant which obeys 1 � c1 � 2. The exact values depend on the model by
which the pore space is described, and are given further on in this paper (section 4).

3.3. The theory of Katz and Thompson

This theory presents another definition of the length scaleL0, which may be written as [33, 34]:

L2
0 = c2δ

2
c . (16)

In this equation, c2 is a constant calculated on the basis of percolation theory and δc
is a pore-size parameter obtained from mercury porosimetry experiments. Moreover, other
works also support the use of intrusion porosimetry for calibrating the pore dimension used
in calculating the permeability [6, 39]. δc represents the critical pore diameter at which the
invading mercury first forms a connected path spanning the sample. It may thus be seen as
a percolation threshold in terms of pore diameter and corresponds to a critical pressure of
intrusion Pc. It was first suggested [35, 36] and later shown from resistivity measurements
[37] that such a critical pressure coincides with the inflection point of the mercury-injection
curve and hence to the maximum of its derivative. In other words, δc is the abscissa of the
maximum of the typical curve of incremental intruded volume versus pore diameter.

The way in which the constant c2 (≈1/226) was first calculated by Katz and Thompson
was criticized by several authors [5, 29]. The latter proposed other values, always higher than
1/226, and depending on the kind of pores assumed to describe the porous system. As in the
case of the parameter c1 of equation (15), a few formulae are given for c2 in the next section.

4. The model of pore structure in compressed expanded graphite

4.1. Mercury-intrusion experiment

Porosimetry data were obtained using a Micromeritics PoreSizer 9320 instrument. Mercury is
forced to penetrate a sample having a volume close to 0.3 cm3. For that purpose, the hydrostatic
pressure is increased from 0 up to 2070 bar in an equilibration mode which allows mercury to
flow into the pores for a specified length of time. The output data give the intruded volume as
a function of applied pressure.

The raw injection curve is given in figure 6(a). As discussed below, and similarly to what
is supposed for most porous materials, cylindrical pores are assumed. Such an assumption
allows one to apply the well-known Washburn equation [38], which assigns a particular pore
diameter δ to a given injection pressure P :

P = −4γ cos θ

δ
. (17)

θ = 130◦ is the contact angle between mercury and graphite, and γ = 485 dyn cm−1 is the
surface tension of mercury.
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Figure 6. (a) Mercury-injection capillary pressure curve for the sample of compressed expanded
graphite. (b) Incremental volume of mercury intruded inside the material as a function of the pore
diameter calculated according to Washburn’s equation (17). δc is the characteristic pore diameter
at the continuity threshold in mercury injection.

While flattened pores are intuitively much more likely within compressed expanded
graphite and were suspected from the anisotropy of other physical properties [26], cylindrical
shapes of pores are conceivable for the following reasons. First, the permeability is governed
by narrow throats connecting wider pores within the material, and such necks may be seen as
locally cylindrical. Next, even if these wider pores are indeed flattened, effective diameters
could be associated with non-cylindrical geometries. In the models described below, the sizes
of the pores have wide continuous distributions, and hence non-cylindrical voids could be
defined by such effective diameters. Finally, it is well known that mercury porosimetry deals
with entry diameters rather than actual pore diameters, just like permeability [39]. Hence
it may be assumed that locally cylindrical voids are relevant, since excellent correlations are
found between measured permeability and entry pore diameters derived from porosimetry [39].
Besides, simulations have clearly shown that taking into account such capillary resistances at
pore entrances leads to greater threshold pressures [40]; thus, the value of δc obtained below
is assumed to correspond to the unique transport length scale which dominates the magnitude
of the permeability.

The curve of incremental intrusion versus pore diameter, the latter being calculated from
equation (17), is shown in figure 6(b). According to the previous discussion concerning
the percolation of mercury throughout the sample, the critical pore diameter is found to be
δc ≈ 1.76 µm at Pc ≈ 7 bar. It should be noticed that at the highest pressure of mercury
(about 2000 bar), the final density of the sample is not that of pure graphite (≈2200 kg m−3).
Surprisingly, it amounts only about 1540 kg m−3, thus corresponding to a residual porosity
close to 30%. This result was checked by subjecting another sample of compressed expanded
graphite having the same initial density to identical experimental conditions. At this time, no
convincing explanation has been found to account for such a high amount of closed porosity
still existing at such high pressures. Nevertheless, this means that the relevant porosity is
� = 1 − 140/1540 = 90.91% and not 1 − 140/2200 = 93.64% as supposed a priori. Hence,
the numerical applications of equations (12) and (14) given in the following section should
use the relevant pore volume of the material, that is 0.9091 × sample volume. Coming back
to the quantitative application of Katz and Thompson theory (equation (16)), the constant c2

whose value depends on the kind of pores considered is required. Thus, the model of the pore
space should be now introduced.
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4.2. Models considered

For any of the four models considered below, the following assumptions are made. First, the
pores have a cylindrical geometry with a diameter δ and a length l. Next, the distribution of
their sizes is broad on a logarithmic scale (e.g. log-normal); in other words, the pore sizes vary
over several orders of magnitude, exactly as observed in figure 6(b). Indeed, models which
take into account only a single pore type [5, 41] are inappropriate for our material.

• Model I. The pores have a constant length l = l0, and only the diameters δ are widely
distributed. The parameter& and the permeabilities from JKS, on the one hand, and from
KT, on the other hand, may be calculated from the following sets of equations, respectively.
From [42]:

&I = δc

t + 2
(18a)

k = cI
1
&2

8F
with cI

1 = 16
(2 + t)4+t

(4 + t)4+t
≈ 1.39 (18b)

k = cI
2
δ2
c

F
with cI

2 = 2
(2 + t)2+t

(4 + t)4+t
≈ 1.14 × 10−2 (18c)

or from [29]:

&′
I = δc

ν + 2
(18d)

k = cI′
1
&2

8F
with cI′

1 = 1

4
(2 + ν)2

(
1

2

)ν
≈ 1.12 (18e)

k = cI′
2
δ2
c

F
with cI′

2 = 1

32

(
1

2

)ν
≈ 1.69 × 10−2. (18f)

In these equations, the parameters t and ν are the critical exponents for the electrical
conductivity and the correlation length, respectively. In three-dimensional systems, they
are such that t ≈ 1.9 and ν ≈ 0.88 [43, 44].

• Model II. The length is proportional to the diameter with a proportionality constant α:
l = αδ [29]:

&II = δc

2(1 + ν)
(19a)

k = cII
1
&2

8F
with cII

1 = (1 + ν)2
(

1

3

)ν
≈ 1.34 (19b)

k = cII
2
δ2
c

F
with cII

2 = 1

32

(
1

3

)ν
≈ 1.18 × 10−2. (19c)

• Model III. The pores obey l = δ. It is not clear what makes models II and III different,
but their respective authors derive slightly different results. Thus, [42]:

&III = δc

2(1 + t)
(20a)

k = cIII
1
&2

8F
with cIII

1 = 27
(1 + t)3+t

(3 + t)3+t
≈ 2.07 (20b)

k = cIII
2
δ2
c

F
with cIII

2 = 27

32

(1 + t)1+t

(3 + t)3+t
≈ 7.68 × 10−3. (20c)
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• Model IV. The pores are sinuous tubes with a curvature R such that l = √
Rδ [29, 45]:

&IV ≈ 0.383δc (21a)

k = cIV
1
&2

8F
with cIV

1 ≈ 0.81 (21b)

k = cIV
2
δ2
c

F
with cIV

2 = 1

32

(
3

7

)ν
≈ 1.48 × 10−2. (21c)

On the basis of these four models and using the experimental values of the permeability,
the formation factors F may be calculated and compared.

5. Comparison of the models of pore structure

5.1. Calculated parameters

The numerous previous formulae are now applied in order to compare their results and hence
test the applicability of the models. The following quantities are thus calculated:

• Parameter & from equation (14), in which Sp ≈ 30 m2 g−1 × sample weight ≈ 33.6 m2,
Vp = �× sample volume ≈ 7.27 × 10−6 m3 and m(�) ≈ 1.5.

• Parameters&i (i = I, II, III or IV, depending on the model), from equations (18a), (18d),
(19a), (20a) and (21a).

• Formation factors F(&) from equations (18b), (18e), (19b), (20b) and (21b), using the
value of & calculated above from equation (14).

• Formation factors F(&i) (i = I, II, III or IV) from equations (18b), (18e), (19b), (20b)
and (21b), now using the different values of &I, &II, &III and &IV calculated above.
Formations factors calculable from equations (18c), (18f ), (19c), (20c) and (21c) are
respectively identical.

• Formation factor F(KC) from equation (12).

5.2. Results

The formation factors Fa and Fc are thus calculated for the two directions of measurement
defined in section 2 of this paper. The values of all of these quantities are gathered in table 1. It
may be seen that only the model for which the lengths of the pores are equal to their diameters
is completely consistent in terms of both the dynamical length & and the formation factors.
It thus seems that KT and JKS theories only lead to the same results if the correct values of
the prefactors given in equations (18) to (21) are first derived. This may be achieved by a
straightforward comparison of the corresponding calculated formation factors. Under these
conditions, the agreement between all of the calculated values ofF is even strikingly good with
the Kozeny–Carman theory. Also, the values of Fa which are calculated with this model with
l = α are close to what was found from the diffusion experiments (see section 2.3). Hence,
from the point of view of the permeability, compressed expanded graphite could be seen as a
porous medium in which the pores have a wide distribution of sizes but maintain lengths and
diameters that are close to each other. Another—and more probable—possibility is that such
a description of the material only corresponds to the narrow parts of the pore network, which
in fact control the permeability. The diameters of these pore necks would be given by mercury
porosimetry (pore entry) and would connect greater flattened voids.
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Table 1. Dynamical lengths (&,&i ) and formation factors (Fa and Fc , depending on the direction
of measurement) calculated in the frameworks of the four pore models considered: & is calculated
from both the pore surface area and the pore volume of the sample (equation (14)); the &i are
derived from the critical pore diameter δc , and depend on the model: I, II, III or IV (equations
(18a), (18d), (19a), (20a) and (21a)); the F(&) are obtained from equations (18b), (18e), (19b),
(20b) and (21b) for the given value of &, while the F(&i ) are calculated from the same equations
but using the (different) values of&i . Finally, the F(KC) are the formation factors derived from the
KC theory (equation (12)).

Model I: l = l0 Model II: l = αδ Model III: l = δ Model IV: l = √
Rδ

& 0.289 µm 0.289 µm 0.289 µm 0.289 µm

&i 0.452 µm 0.468 µm 0.304 µm 0.675 µm
or
0.612 µm

F(&) Fa = 3.48; Fc = 6.43 Fa = 3.36; Fc = 6.22 Fa = 5.18; Fc = 9.58 Fa = 2.03; Fc = 3.76

F(&i ) Fa = 8.52; Fc = 15.75 Fa = 8.82; Fc = 16.31 Fa = 5.74; Fc = 10.01 Fa = 11.09; Fc = 20.50
or
Fa = 12.59; Fc = 23.27

F(KC) Fa = 5.12; Fc = 9.47 Fa = 5.12; Fc = 9.47 Fa = 5.12; Fc = 9.47 Fa = 5.12; Fc = 9.47

Finally, the following remark should be made. As expected, the hydraulic diameter rh is
not equal to the dynamical one &, since

rh = 2 × total connected pore volume

Sp
≈ 0.433 µm

and

& = 2 × effective connected pore volume

Sp
≈ 0.30 µm.

Hence, the effective pore volume for fluid transport, which is (&/rh)Vp, is found to be
about 70% of the total pore volume. This result is not surprising, since dead-ends are expected
in any random percolating structure. Moreover, such a great percentage of blind pores is
responsible for the rather low values of the permeability in compressed EG, considering its
high total porosity. In fact, most common materials which possess similar permeabilities
have much lower porosities (examples are given in [1]). Besides, it is well known that EG
compacted to a density of about 1100 kg m−3, thus having a total porosity of 50%, is completely
impermeable and is commonly used as seals and gaskets [10, 14, 46]. Consequently, the volume
fraction participating in fluid flow in our highly porous material is much less than the total
space available. As shown in the next section, the volume percentages of pores yielding the
major contributions to the permeability and to the ionic conductivity are even lower.

6. Calculation of the permeability and formation factor

6.1. Assumptions and discussion

Phenomenological expressions for the permeability and the electrical conductivity that can
be determined strictly from mercury-injection data were postulated by Katz and Thompson
[34]. It is known that the electrical conductance of a pipe of diameter δ only varies with δ,
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whereas its hydraulic conductance varies like δ3. Thus, according to KT, the electrical (ge)
and hydraulic (gh) conductances of a porous material may be written as

ge(δ) = σ0

(
L

δc

)
δN(δ)� (22a)

gh(δ) = A

(
L

δc

)
δ3N(δ)� (22b)

where N(δ) represents the fraction of connected pore space composed of pore widths of size
δ and larger, σ0 is the conductivity of the electrolyte saturating the pore space and A is a
constant factor whose value is such that equations (20c) and (22b) are compatible with each
other. Formulae (22a) and (22b) are the products of a weight factor (δ or δ3), which expresses
the importance of pore widths of size δ, and a density-of-states termN(δ), which measures the
number of paths composed of pore widths not smaller than δ. As δ changes, the magnitudes
of the two factors move in opposite directions, and hence the conductances ge and gh assume
a maximum value for some particular δemax and δhmax , respectively.

The other assumption of KT is that the pore widths of size δemax or δhmax and larger are the
dominant paths for the electrical or the hydraulic problem, respectively. Thus, all connected
paths through the pore space composed of lengths δ � δemax or δhmax contribute significantly
to the conductance, whereas all others do not and are hence ignored. Then, the electrical
conductivity and the permeability are thought to be given by [34]

σ = ge(δ
e
max)

L
= σ0

(
δemax

δc

)
N(δemax)� (23a)

k = gh(δ
h
max)

L
= A

(
(δhmax)

3

δc

)
N(δhmax)�. (23b)

Finally, the definition of the parameters δe and δh such that

�δe = δc − δemax (24a)

�δh = δc − δhmax (24b)

and expansions of both N(δemax) and N(δhmax) about δc to first order in �δe and �δh, resp-
ectively, allow one to express the permeability in terms of the conductivity:

k = A

(
(δhmax)

3

δemax

)(
�δh

�δe

)(
σ

σ0

)
. (25)

Comparison of equations (25), (11) and (16) then leads to

A = c2δ
2
c

(
δemax

(δhmax)
3

)(
�δe

�δh

)
. (26)

6.2. Application to compressed expanded graphite

The formation factor and the permeability may be calculated from equations (23a), (23b) and
(26) if the quantities δemax, δ

h
max, N(δ

e
max) andN(δhmax) are now extracted from the data derived

from the mercury-injection experiment. Since the so-called [34, 47] saturation function N(δ)
is the percentage of connected pore space composed of pores with widths of size δ and larger,
the mercury volume intruded at pressures lower than Pc should not be taken into account for
determining the previous quantities. According to Katz and Thompson, such a small amount
of mercury which intrudes the sample prior to reaching the threshold pressure is indeed in
defects along the surface and in pores not connected to the first connected cluster. Hence,
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the prethreshold volume is subtracted from the volume at P = Pc, and the ordinate of the
raw injection curve is set to zero at P = Pc. The quantity V ′

p, defined as the cumulative
intrusion minus the prethreshold volume, is plotted as a function of the injection pressure in
figure 7(a).

(a) (b)

Figure 7. (a) Cumulative intrusion of figure 6(a) minus intruded volume before reaching the
threshold pressure Pc (at which the critical pore diameter δc is reached), V ′

p , plotted as a
function of the injection pressure. (b) Relative variations of the electrical and hydraulic con-
ductances, obtained by multiplying V ′

p by the factors δ and δ3, respectively, where δ is the

pore diameter. δemax and δhmax are the characteristic pore diameters for electrical and hydraulic
conductions, respectively.

The relative variations of the electrical and hydraulic conductances ge(δ) and gh(δ) are
obtained by multiplying V ′

p by the factors δ and δ3, respectively. The resulting curves are
displayed in figure 7(b). Their maxima correspond to the optimum paths for the conductivity
(δemax) and for the permeability (δhmax). The characteristic pore diameters for electrical and
hydraulic conduction are thus found to be δemax ≈ 0.99 µm and δhmax ≈ 1.42 µm, resp-
ectively. The saturation functions on the most effective paths may also be derived from
figure 7(b); they are such that N(δc) = 0, N(δemax) = V ′

p(δemax )
/V ′

p(max) ≈ 38.3% and

N(δhmax) = V ′
p(δhmax)

/V ′
p(max) ≈ 15.3%, where V ′

p(max) is the maximum value of V ′
p, i.e.,

that at the greatest injection pressure. Consequently, as suggested before, these fractions of
connected voids composed of pores of sizes greater than δemax or δhmax are relatively low. These
values of N(δemax) and N(δhmax) are in fair agreement with what has been found for various
rocks having permeabilities close to those of our material [34, 47]. Finally, such data mean
that the effective percentage of total pore space is even lower, being only about 21% for the
conductivity and about 8% for the permeability.

The formation factor and the permeability can be now calculated. According to equation
(23a), F is such that F ≈ 5.10 Fa . The constant prefactor A of equation (25), which is
required in the calculation of the permeability, is obtained by putting the numerical values
of each term in (26), and thus A ≈ 1.857 × 10−2 1/54. This result is somewhat different
from that of KT, who obtained A ≈ 1/89. The permeability is now calculated with equation
(23b): k ≈ 4.17 × 10−15 m2 ka . It may be seen that these results are extremely close to the
experimental values given in section 2. In our opinion, the fact that Fa and ka rather than Fc
and kc are recovered originates from the penetration of mercury inside the sample being easier
along direction �a than along the c-axis. Thus, the critical pore size δc is reached with mercury
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invading the material more rapidly via the voids between the edges of the graphite particles
(the xy-plane in figure 1) than via those between the surfaces of carbon sheets. Consequently,
the optimum paths for both the conductivity and the permeability are essentially those of the
direction �a.

7. Conclusions

The permeation of a gas as well as the diffusion of ions throughout the pore space of a cube made
of compressed expanded graphite have been investigated. The corresponding measurements
made along two orthogonal directions lead to anisotropic experimental values of both the
permeability k and the formation factor F . Mercury porosimetry was also performed on the
material. Several parameters such as characteristic pore diameter δc and saturation functions
were derived from the mercury intrusion data. Substitution of δc in various equations has
shown that different theories give similar results as long as a single model is considered, that
for which the pores may be seen as capillary tubes having both a wide distribution of sizes
and a length close to the diameter (the l = δ model). This finding is somewhat striking for a
material in which flattened pores are expected, but probably reflects the fact that narrow and
roughly cylindrical throats dominate both the mercury intrusion and the transport properties.

Next, the equation of Katz and Thompson linking k and δc was applied with a suitable
constant prefactor, i.e., that corresponding to the model with l = δ. However, it should be
stressed that the latter was found to be relevant only thanks to similar results being obtained
simultaneously in the framework of KT, KC and JKS theories. It thus seems that all of these
models need to be compared before being applied; otherwise unsuitable constant prefactors
could be used, leading to a poor agreement with the experimental data. The permeability
calculated in this way was thus found to agree remarkably well with the measured value.
Nevertheless, k being anisotropic, only one of the two components of the permeability tensor
was recovered. Similarly, the formation factor calculated according to various theories was
found to be very close to the measured value. Again, KT and JKS theories were shown to
work correctly, as was the Kozeny–Carman model which was shown to give unexpectedly
good results.

We now aim to study the transport properties within the pore space for a series of samples
of expanded graphite compressed at various densities. In particular, several relationships
linking permeability and porosity will be tested for these materials and should provide more
information about the pore structure.
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